The is a marvelous article which explains how to use Hugo and MathJax in close harmony. Unfortunately it was written a while ago and only works for MathJax 2.x. This article updates the content of the original to MathJax > 3.1. The original is still worth reading as it nicely explains the functionality.
Firstly MathJax > 3.0 likes to have pollyfill. So the script inclusion should look like this:
1
2
|
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
The solution to the problem of having to escape many characters in LaTeX markup is solved in a simlar manner, however a combination of Hugo now using the Goldmark renderer and the MathJax API changing quite significantly at version 3.0, it largely needs re-writing. Firstly the script to add the class to the code blocks now looks like this:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
<script>
window.MathJax = {
tex: {
inlineMath: [['$','$'], ['\\(','\\)']],
displayMath: [['$$','$$'], ['\[','\]']],
processEscapes: true,
processEnvironments: true
},
options: {
skipHtmlTags: ['script', 'noscript', 'style', 'textarea', 'pre']
},
startup: {
pageReady() {
return MathJax.startup.defaultPageReady().then(function () {
var all = window.MathJax.startup.document.getMathItemsWithin(document.body), i;
for(i = 0; i < all.length; i += 1) {
console.log(all[i])
all[i].start.node.parentNode.className += ' has-jax';
}
});
}
}
};
</script>
|
Now, by default, the Goldmark renderer does not permit raw html in markdown, instead converting it to a comment. To change this behaviour the Hugo configuration needs the following code added:
1
2
3
4
|
[markup]
[markup.goldmark]
[markup.goldmark.renderer]
unsafe = true
|
Now, LaTeX can be included in <div>
tags without worrying about having to escape either _
or \
characters. The following code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
<div>
$$
\begin{align*}
\phi(x,y) &= \phi \left(\sum_{i=1}^n x_ie_i, \sum_{j=1}^n y_je_j \right) \\
&= \sum_{i=1}^n \sum_{j=1}^n x_i y_j \phi(e_i, e_j) \\
&= (x_1, \ldots, x_n) \left( \begin{array}{ccc}
\phi(e_1, e_1) & \cdots & \phi(e_1, e_n) \\
\vdots & \ddots & \vdots \\
\phi(e_n, e_1) & \cdots & \phi(e_n, e_n)
\end{array} \right)
\left( \begin{array}{c}
y_1 \\
\vdots \\
y_n
\end{array} \right)
\end{align*}
$$
</div>
|
renders as:
$$
\begin{align*}
\phi(x,y) &= \phi \left(\sum_{i=1}^n x_ie_i, \sum_{j=1}^n y_je_j \right) \\
&= \sum_{i=1}^n \sum_{j=1}^n x_i y_j \phi(e_i, e_j) \\
&= (x_1, \ldots, x_n) \left( \begin{array}{ccc}
\phi(e_1, e_1) & \cdots & \phi(e_1, e_n) \\
\vdots & \ddots & \vdots \\
\phi(e_n, e_1) & \cdots & \phi(e_n, e_n)
\end{array} \right)
\left( \begin{array}{c}
y_1 \\
\vdots \\
y_n
\end{array} \right)
\end{align*}
$$